Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499563

RESUMO

In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.


Assuntos
Hordeum , Hordeum/metabolismo , Ácido Abscísico/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
2.
Plant Soil ; 456(1-2): 189-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32952222

RESUMO

Aims: This research aimed to establish how Hordeum vulgare responds to abiotic and biotic stress affecting in tandem. Methods: Plants were inoculated with Heterodera filipjevi and treated with cadmium (Cd) concentration (5 µM) that can occur in the cultivated soil. To verify the hypothesis about participation of increased antioxidative defence in H. vulgare under stress, biochemical and microscopic methods were implemented. Results: The amount of superoxide anions and hydrogen peroxide was diminished in plants that were both nematode-inoculated and cadmium-treated. Superoxide anions were rendered harmless by increased activity of superoxide dismutase, and H2O2 was scavenged via Foyer-Halliwell-Asada pathway. The unique enhanced antioxidant capacity of double stressed plants was also linked with the accumulation of S-nitrosoglutathione as nitrosoglutathione reductase activity was inhibited. Furthermore, stimulated activity of arginase in these plants could promote polyamine synthesis and indirectly enhance non-enzymatic antioxidant mechanism. Results indicate that different antioxidants operating together significantly restricted oxidation of lipids and proteins, thus the integrity of cell membranes and protein functions were maintained. Conclusions: The ROS deactivation machinery in barley leaves showed an unusual response during stress induced by H. filipjevi infection and cadmium treatment. Plants could induce a multi-component model of stress response, to detoxify Cd ions and efficiently repair stress damage.

3.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32955612

RESUMO

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Assuntos
Hordeum/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Ácaros/patogenicidade , Folhas de Planta/metabolismo , Tylenchoidea/patogenicidade , Animais , Cloroplastos/parasitologia , Cloroplastos/ultraestrutura , Enzimas/metabolismo , Hordeum/fisiologia , Fenóis/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo
4.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859113

RESUMO

Reactive nitrogen species (RNS) are redox molecules important for plant defense against pathogens. The aim of the study was to determine whether the infection by the beet cyst nematode Heterodera schachtii disrupts RNS balance in Arabidopsis thaliana roots. For this purpose, measurements of nitric oxide (NO), peroxynitrite (ONOO-), protein S-nitrosylation and nitration, and nitrosoglutathione reductase (GSNOR) in A. thaliana roots from 1 day to 15 days post-inoculation (dpi) were performed. The cyst nematode infection caused generation of NO and ONOO- in the infected roots. These changes were accompanied by an expansion of S-nitrosylated and nitrated proteins. The enzyme activity of GSNOR was decreased at 3 and 15 dpi and increased at 7 dpi in infected roots, whereas the GSNOR1 transcript level was enhanced over the entire examination period. The protein content of GSNOR was increased in infected roots at 3 dpi and 7 dpi, but at 15 dpi, did not differ between uninfected and infected roots. The protein of GSNOR was detected in plastids, mitochondria, cytoplasm, as well as endoplasmic reticulum and cytoplasmic membranes. We postulate that RNS metabolism plays an important role in plant defense against the beet cyst nematode and helps the fine-tuning of the infected plants to stress sparked by phytoparasitic nematodes.

5.
J Plant Physiol ; 226: 48-55, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698912

RESUMO

Abscisic acid (ABA) is a phytohormone involved in the acquisition of primary dormancy during seeds maturation as well as dormancy maintenance in imbibed seeds. After imbibition, the ABA content decreased to a much lower level in embryos of freshly harvested triticale grains of the Leontino cultivar, which is more susceptible to pre-harvest sprouting (PHS) than embryos of the Fredro cultivar. Lower ABA content in the Leontino cultivar resulted from increased expression of TsABA8'OH1 and TsABA8'OH2, which encode ABA 8'-hydroxylase and are involved in ABA catabolism. Higher ABA content and maintenance of dormancy in Fredro grains were correlated with intensified ABA biosynthesis, which resulted from higher expression of TsNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase. These results suggest that grains of triticale cultivars with different resistance to PHS vary in their ability to metabolize ABA after imbibition. After-ripening did not affect the ABA content in embryos of dry grains of either triticale cultivar. However, after-ripening caused dormancy release in Fredro grains and significantly affected the ABA content and the rate of its metabolism after imbibition. A more rapid decline in ABA content in imbibed Fredro grains was accompanied by decreased transcript levels of TsNCED1 as well as increased expression of TsABA8'OH1 and TsABA8'OH2. Thus, after-ripening may affect dormancy of grains through reduction of the ABA biosynthesis rate and intensified ABA catabolism. Overexpression of TsNCED1 in tobacco increases ABA content and delays germination, while overexpression of TsABA8'OH2 decreases ABA content, accelerates germination, and reduces the sensitivity to ABA of transgenic seeds compared to seeds of wild-type plants. Therefore, these genes might play an important role in the regulation of triticale grain dormancy, thus affecting susceptibility to PHS.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Dormência de Plantas/genética , Proteínas de Plantas/genética , Triticale/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Grão Comestível/genética , Grão Comestível/fisiologia , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Triticale/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA